By David Pozar Microwave Engineering 33rd Third Edition Pozar Microwave EngineeringMillimeter-Wave Circuits for 5G and RadarComputational Electromagnetics for RF and Microwave EngineeringMicrowave Engineering, Fourth Edition Wiley E-Text Reg CardPrinciples of RF and Microwave DesignRF and Microwave EngineeringMicrowave EngineeringWaveguide HandbookMicrowave and RF DesignFundamentals of Microwave and RF DesignThe RF and Microwave HandbookPlanar Microwave EngineeringHigh-Frequency Integrated CircuitsRF MEMS and Their ApplicationsIntroduction to Microwave ImagingFOUNDATIONS FOR MICROWAVE ENGINEERING, 2ND EDAdvanced RF & Microwave Circuit DesignThe RF Microwave HandbookMicrowave, Radar & RF EngineeringMicrowave EngineeringMicrowave EngineeringCoplanar Waveguide Circuits, Components, and SystemsMicrowave Transistor AmplifiersA Student's Guide to Maxwell's EquationsElectromagnetics, Microwave Circuit and Antenna Design for Communications EngineeringRF and Microwave Wireless SystemsSocial and Political PhilosophyMicrowave EngineeringMicrowave and RF Design of Wireless SystemsMicrowave Devices and CircuitsMulticonductor Transmission-Line Structures Solutions Manual for RF and Microwave Wireless Systems Refer to G. Telecki X6317Microwave EngineeringMicrowave Engineering, 3Rd EdRF Power Amplifiers for Wireless CommunicationsHow To Diagnose and Repair Automotive Electrical SystemsRF Circuit DesignNonlinear Circuit Simulation and ModelingThe Design of CMOS Radio-Frequency Integrated CircuitsRF and Microwave Circuit Design #### **Pozar Microwave Engineering** RF and Microwaves is currently in the forefront as a fundamental technology in numerous industrial and commercial applications. As applications of RF and microwaves continue to evolve and as this technology becomes a common factor in the scientific and engineering communities it is imperative that university students and practicing scientists and engineers become thoroughly familiar with the measurement principles, electronics, and design fundamentals underlying this technology. RF and Microwaves is currently in the forefront as a fundamental technology in numerous industrial and commercial applications. As applications of RF and microwaves continue to evolve and as this technology becomes a common factor in the scientific and engineering communities it is imperative that university students and practicing scientists and engineers become thoroughly familiar with the measurement principles, electronics, and design fundamentals underlying this technology. Advanced RF & Microwave Circuit Design is the guickest way to master this powerful subject, and information contained within the pages of this book will make every key electronic, measurement, and design principle you need a simple task. The book introduces concepts on a wide range of materials and has several advantages over existing texts, including: 1. Page 2/25 The presentation of a series of scientific postulates and axioms, which lays the foundation for any of the engineering sciences and is unique to this book compared with similar RF and Microwave texts. 2. The presentation of classical laws and principles of electricity and magnetism, all inter-related. conceptually and graphically. 3. There is a shift of emphasis from rigorousmathematical solutions of Maxwell's equations, and instead has been aptly placed on simple yet fundamental concepts that underlie these equations. This shift of emphasis will promote a deeper understanding of the electronics, particularly at RF/Microwave frequencies. 4. Fundamentals of electronics have been amply treated, which makes an easy transition to RF/Microwave principles and prevents a gap of knowledge in the reader's mind. #### Millimeter-Wave Circuits for 5G and Radar ### Computational Electromagnetics for RF and Microwave Engineering A practical, tutorial guide to the nonlinear methods and techniques needed to design real-world microwave circuits. ## Microwave Engineering, Fourth Edition Wiley E-Text Reg Card 'Microwave Engineering' is a textbook intended for $\frac{1}{Page}$ 3/25 undergraduate students of electronics and communication engineering. The text can also serve as reference material for postgraduate students. The book covers both the fundamental and advanced topics of this area with some insights into latest developments in this area. #### **Principles of RF and Microwave Design** Microwave Engineering is a vast subject with topics ranging from semiconductor physics to electromagnetic theory. This textbook covers the microwave and RF engineering topics from an Electronic Design Automation (EDA) approach. The topics includes RF and microwave concepts and components, transmission lines, network parameters, maximum power transfer requirements, lumped and distributed impedance matching, and several linear amplifier designs. Almost all subject matters covered in the textbook are accompanied by examples that are solved using the latest version of Keysight ADS software. University students and practicing engineers will find this book both as a potent learning tool and as a reference guide to guickly setup designs using the ADS software. The book thoroughly covers the basics as well as introducing techniques that may not be familiar to some engineers. This includes subjects such as the frequent use of the MATLAB Script capability. #### **RF and Microwave Engineering** The recent shift in focus from defense and government work to commercial wireless efforts has caused the job of the typical microwave engineer to change dramatically. The modern microwave and RF engineer is expected to know customer expectations, market trends, manufacturing technologies, and factory models to a degree that is unprecedented in the #### **Microwave Engineering** #### **Waveguide Handbook** This extensively revised edition offers a comprehensive, practical, up-to-date understanding of how to tackle a power amplifier design with confidence and quickly determine the cause of malfunctioning hardware. #### Microwave and RF Design This book provides a fundamental and practical introduction radio frequency and microwave engineering and physical aspectsof wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF designtools like RF circuit simulation, EM simulation and computerizeds mith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the readercan directly transfer the methods within the context of their ownwork. At the end of each chapter a list of problems is given inorder to deepen the reader's understanding of the chaptermaterial and practice the new competences. Solutions are availableon the author's website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passivecircuits, antennas Uses various examples of modern RF tools that show how themethods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, theireffects, and their utilization in passive circuits and antennastructures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http://www.fhdortmund.de\gustrau rf textbook) This will be an invaluable textbook for bachelor andmasters students on electrical engineering courses(microwave engineering, basic circuit theory and electromagneticfields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area willalso find this book of interest. ### Fundamentals of Microwave and RF Design Microelectromechanical systems (MEMS) refer to a collection of micro-sensors and actuators, which can react to environmental change under micro-circuit control. The integration of MEMS into traditional Radio Frequency (RF) circuits has resulted in systems with superior performance levels and lower manufacturing costs. The incorporation of MEMS based fabrication technologies into micro and millimeter wave systems offers viable routes to ICs with MEMS actuators. antennas, switches and transmission lines. The resultant systems operate with an increased bandwidth and increased radiation efficiency and have considerable scope for implementation within the expanding area of wireless personal communication devices. This text provides leading edge coverage of this increasingly important area and highlights the overlapping information requirements of the RF and MEMS research and development communities. * Provides an introduction to micromachining techniques and their use in the fabrication of micro switches, capacitors and inductors * Includes coverage of MEMS devices for wireless and Bluetooth enabled systems Essential reading for RF Circuit design practitioners and researchers requiring an introduction to MEMS technologies, as well as practitioners and researchers in MEMS and silicon technology requiring an introduction to RF circuit design. #### The RF and Microwave Handbook Considerably expanded and updated, the second edition of this bestselling reference and textbook is updated with current wireless systems with sections on 4G and the technologies behind 5G cellular communications. This book includes 10 real world case studies of leading edge designs, taking readers through the design process and the many pragmatic designs that must be made during the process. It includes extensive end-of-chapter exercises ranging from less challenging testing to involved, open-ended design exercises. Considerably expanded and updated second edition of this best-selling reference, graduate and/or advanced undergraduate textbook * 'System module' updated with current wireless systems with sections on 4G and the technologies behind 5G cellular communications. * Includes 10 real world case studies of leading edge designs, taking readers through the design process and the many pragmatic designs that must be made during the process. * Includes extensive end-of-chapter exercises ranging from less challenging testing to involved, open-ended design exercises #### **Planar Microwave Engineering** #### **High-Frequency Integrated Circuits** A comprehensive introduction to microwave devices and circuits. Includes both physical and mathematical descriptions and many practical illustrations. #### **RF MEMS and Their Applications** An anthology of basic statements by the most influential social and political philosophers of Western civilization. Includes Plato, Aristotle, Machiavelli, Hobbes, Locke, Rousseau, Jefferson, Thoreau, Mill, Marx and Engels, Lenin, Mussolini, Hitler, Dewey, and Gandhi. #### Introduction to Microwave Imaging Focusing on the design of microwave circuits and components, this valuable reference offers professionals and students an introduction to the fundamental concepts necessary for real world design. The author successfully introduces Maxwell's equations, wave propagation, network analysis, and design principles as applied to modern microwave engineering. A considerable amount of material in this book is related to the design of specific microwave circuits and components, for both practical and motivational value. It also presents the analysis and logic behind these designs so that the reader can see and understand the process of applying the fundamental concepts to arrive at useful results. The derivations are well laid out and the majority of each chapter's formulas are displayed in a nice tabular format every few pages. This Third Edition offers greatly expanded coverage with new material on: Noise; Nonlinear effects; RF MEMs; transistor power amplifiers; FET mixers; oscillator phase noise; transistor oscillators and frequency multiplier. ### FOUNDATIONS FOR MICROWAVE ENGINEERING, 2ND ED A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance. #### **Advanced RF & Microwave Circuit Design** Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers. #### The RF Microwave Handbook #### Microwave, Radar & RF Engineering A comprehensive introduction to the hardware, parameters, and architectures of RF/microwave wireless systems As the basis for some of the hottest technologies of the newmillennium, radio frequency (RF) and microwave wireless systemsrapidly propel us toward a future in which the transmission ofvoice, video, and data communications will be possible anywhere inthe world through the use of simple, handheld devices. This book provides scientists and engineers with clear, thorough, up-to-date explanations of all aspects of RF and microwave wirelesssystems, including general hardware components, system parameters, and architectures. Renowned authority Kai Chang covers bothcommunication and radar/sensor systems and extends the discussion to other intriguing topics, from global positioning systems (GPS)to smart highways and smart automobiles. With an emphasis on basicoperating principles, Dr. Chang reviews waves and transmissionlines, examines modulation and demodulation and multiple-accesstechniques, and helps bridge the gap between RF/microwaveengineering and communication system design. Ample practicalexamples of components and system configurations and nearly 300illustrations and photographs complete this timely andindispensable resource. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment #### **Microwave Engineering** #### **Microwave Engineering** A comprehensive introduction to the hardware, parameters, and architectures of RF/microwave wireless systems As the basis for some of the hottest technologies of the new millennium, radio frequency (RF) and microwave wireless systems rapidly propel us toward a future in which the transmission of voice. video, and data communications will be possible anywhere in the world through the use of simple, handheld devices. This book provides scientists and engineers with clear, thorough, up-to-date explanations of all aspects of RF and microwave wireless systems, including general hardware components, system parameters, and architectures. Renowned authority Kai Chang covers both communication and radar/sensor systems and extends the discussion to other intriguing topics, from global positioning systems (GPS) to smart highways and smart automobiles. With an emphasis on basic operating principles, Dr. Chang reviews waves and transmission lines, examines modulation and demodulation and multiple-access techniques, and helps bridge the gap between RF/microwave engineering and communication system design. Ample practical examples of components and system configurations and nearly 300 illustrations and photographs complete this timely and indispensable resource. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department ### Coplanar Waveguide Circuits, Components, and Systems Discover the concepts, architectures, components, tools, and techniques needed to design millimeterwave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry. #### **Microwave Transistor Amplifiers** Up-to-date coverage of the analysis and applications of coplanarwaveguides to microwave circuits and antennas The unique feature of coplanar waveguides, as opposed to more conventional waveguides, is their uniplanar construction, in whichall of the conductors are aligned on the same side of the substrate. This feature simplifies manufacturing and allows fasterand less expensive characterization using on-wafer techniques. Coplanar Wavequide Circuits, Components, and Systems is an engineer's complete resource, collecting all of the availabledata on the subject. Rainee Simons thoroughly discusses propagation parameters for conventional coplanar waveguides and includesvaluable details such as the derivation of the fundamental equations, physical explanations, and numerical examples. Coverage also includes: Discontinuities and circuit elements Transitions to other transmission media Directional couplers, hybrids, and magic T Microelectromechanical systems based switches and phaseshifters Tunable devices using ferroelectric materials Photonic bandgap structures Printed circuit antennas #### A Student's Guide to Maxwell's Equations Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded. # Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter. #### **RF and Microwave Wireless Systems** With this self-contained, introductory text, readers will easily understand the fundamentals of microwave and radar image generation. Written with the complete novice in mind, and including an easy-to-follow introduction to electromagnetic scattering theory, it covers key topics such as forward models of scattering for interpreting S-parameter and timedependent voltage data, S-parameters and their analytical sensitivity formulae, basic methods for realtime image reconstruction using frequency-sweep and pulsed-radar signals, and metrics for evaluating system performance. Numerous application examples and practical tutorial exercises provided throughout allow guick understanding of key concepts, and sample MATLAB codes implementing key reconstruction algorithms accompany the book online. This one-stop resource is ideal for graduate students taking introductory courses in microwave imaging, as well as researchers and industry professionals wanting to learn the fundamentals of the field. #### Social and Political Philosophy #### **Microwave Engineering** About The Book: The book covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. It is an essential reference book for the practicing microwave engineer ### Microwave and RF Design of Wireless Systems This comprehensive resource provides a thorough introduction to the principles of electronic circuits operating in the radio, microwave, and millimeterwave frequency ranges. The book highlights the fundamental physical laws of classical electromagnetics using a foundation of Maxwell's equations to give insight into the operating principles of circuit elements of all kinds, from lumped elements to transmission lines, waveguides, optical fibers, and quasi-optical structures. Standard passive system components like filters, splitters, couplers, hybrids, baluns, and antennas are explained to acclimate the reader to considering multiple technological solutions for common design problems. A basic overview of active circuit designs, such as amplifiers, mixers, and multipliers is also provided, along with discussion of the performance characteristics of electronic systems, including noise and linearity. Emphasis is placed on visualization and understanding of how and why electronic circuits of all frequencies are built and operate the way they do. Readers learn how to match an amplifier for optimum noise performance over the broadest bandwidth with the fewest number of elements and how to visualize the coupling of various modes in a mixed waveguide-type structure and avoid resonances due to trapped, higher-order modes. The book provides the tools needed to design and optimize a launcher from microstrip into waveguide, and whether the best characteristics can be achieved by incorporating matching elements in the microstrip section, the waveguide section, or both. Packed with references and examples, readers learn not only how to do the math but what the math means. #### **Microwave Devices and Circuits** If you're looking for a clear, comprehensive overview of basic electromagnetics principles and applications to antenna and microwave circuit design for communications, this authoritative book is your best choice. Including concise explanations of all required mathematical concepts needed to fully comprehend the material, the book is your complete resource for understanding electromagnetics in current, emerging and future broadband communication systems, as well as high-speed analogue and digital electronic circuits and systems. #### **Multiconductor Transmission-Line Structures** David Pozar, author of Microwave Engineering, Second Edition, has written a new text that introduces students to the field of wireless communications. This text offers a quantitative and, design-oriented presentation of the analog RF aspects of modern wireless telecommunications and data transmission systems from the antenna to the baseband level. Other topics include noise, intermodulation, dynamic range, system aspects of antennas and filter design. This unique text takes an integrated approach to topics usually offered in a variety of separate courses on topics such as antennas and proagation, microwave systems and circuits, and communication systems. This approach allows for a complete presentation of wireless telecommunications systems designs. The author's goal with this text is for the student to be able to analyze a complete radio system from the transmitter through the receiver front-end, and quantitatively evaluate factors. Suitable for a one-semester course, at the senior or first year graduate level. Note certain sections have been denoted as advanced topics, suitable for graduate level courses. # Solutions Manual for RF and Microwave Wireless Systems Refer to G. Telecki X6317 . DC CIRCUITS. 1. Components, Quantities, and Units. 2. Voltage, Current, and Resistance in Electric Circuits. 3. Ohm's Law, Energy, and Power. 4. Series Circuits. 5. Parallel Circuits. 6. Series-Parallel Circuits. 7. Magnetism and Electromagnetism. II. AC CIRCUITS. 8. Introduction to Alternating Current and Voltage. 9. Capacitors. 10. RC Circuits. 11. Inductors. 12. RL Circuits. 13. RLC Circuits and Resonance. 14. Transformers. 15. Pulse Response of Reactive Circuits. III. DEVICES. 16. Introduction to Semiconductors 17. Diodes and Applications. 18. Transistors and Thyristors. 19. Amplifiers and Oscillators. 20. Operational Amplifiers (Op-Amps). 21. Basic Applications of Op-Amps. APPENDICES. A. Table of Standard Resistor Values. B. Batteries. C. Capacitor Color Coding and Labeling. D. The Current Source, Nortons Theorems and Millman's Theorem. E. Devices Data Sheets. Answers to Odd-Numbered Problems. Glossary. Index. #### **Microwave Engineering** Introduces CEM methods, applying the codes that implement them to real-world engineering problems. #### Microwave Engineering, 3Rd Ed Essential reading for experts in the field of RF circuit design and engineers needing a good reference. This book provides complete design procedures for multiple-pole Butterworth, Chebyshev, and Bessel filters. It also covers capacitors, inductors, and other components with their behavior at RF frequencies discussed in detail. Provides complete design procedures for multiple-pole Butterworth, Chebyshev, and Bessel filters Covers capacitors, inductors, and other components with their behavior at RF frequencies discussed in detail #### **RF Power Amplifiers for Wireless** #### **Communications** This book, first published in 2004, is an expanded and revised edition of Tom Lee's acclaimed RFIC text. #### How To Diagnose and Repair Automotive Electrical Systems Presents the equivalent-circuit parameters for a large number of microwave structures. #### **RF Circuit Design** The new and original material in this book will appeal to a diversified audience. R&D microwave scientists will appreciate the use of a perturbation approach to modal analysis and generalized modal theory. Owing to its rigorous treatment of both theoretical issues and practical applications, it is sure to become an indispensable handbook for engineers concerned with the design and modelling of microwave circuits, telecommunications systems, or power systems. # Nonlinear Circuit Simulation and Modeling This classic text provides a thorough coverage of RF and microwave engineering concepts based on fundamental principles of electrical engineering and applied to microwave circuits and devices of practical importance. Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, Page 21/25 nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. A large number of examples and end-of-chapter problems test the reader s understanding of the material. Electromagnetic Theory Transmission Line Theory Transmission Lines and Waveguides Microwave Network Analysis Impedance Matching and Tuning Microwave Resonators Power Dividers and Directional Couplers Microwave Filters Theory and Design of Ferrimagnetic Components Noise and Active RF Components Microwave Amplifier Design Oscillators and Mixers Introduction to Microwave Systems ### The Design of CMOS Radio-Frequency Integrated Circuits Fundamentals of Microwave and RF Design enables mastery of the essential concepts required to cross the barriers to a successful career in microwave and RF design. Extensive treatment of scattering parameters, that naturally describe power flow, and of Smith-chart-based design procedures prepare the student for success. The emphasis is on design at the module level and on covering the whole range of microwave functions available. The orientation is towards using microstrip transmission line technologies and on gaining essential mathematical, graphical and design skills for module design proficiency. This book is derived from a multi volume comprehensive book series, Microwave and RF Design, Volumes 1-5, with the emphasis in this book being on presenting the fundamental materials required to gain entry to RF and microwave design. This book closely parallels the companion series that can be consulted for in-depth analysis with referencing of the book series being familiar and welcoming. Key Features * A companion volume to a comprehensive series on microwave and RF design * Open access ebook editions are hosted by NC State University Libraries at https://repository.lib.ncsu.edu/handle/1840.20/36776 * 59 worked examples * An average of 24 exercises per chapter * Answers to selected exercises * Emphasis on module-level design using microstrip technologies * Extensive treatment of design using Smith charts * A parallel companion book series provides a detailed reference resource #### **RF and Microwave Circuit Design** This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike. ROMANCE ACTION & ADVENTURE MYSTERY & THRILLER BIOGRAPHIES & HISTORY CHILDREN'S YOUNG ADULT FANTASY HISTORICAL FICTION HORROR LITERARY FICTION NON-FICTION SCIENCE FICTION